Identification of RIP1 kinase as a specific cellular target of necrostatins.
نویسندگان
چکیده
Necroptosis is a cellular mechanism of necrotic cell death induced by apoptotic stimuli in the form of death domain receptor engagement by their respective ligands under conditions where apoptotic execution is prevented. Although it occurs under regulated conditions, necroptotic cell death is characterized by the same morphological features as unregulated necrotic death. Here we report that necrostatin-1, a previously identified small-molecule inhibitor of necroptosis, is a selective allosteric inhibitor of the death domain receptor-associated adaptor kinase RIP1 in vitro. We show that RIP1 is the primary cellular target responsible for the antinecroptosis activity of necrostatin-1. In addition, we show that two other necrostatins, necrostatin-3 and necrostatin-5, also target the RIP1 kinase step in the necroptosis pathway, but through mechanisms distinct from that of necrostatin-1. Overall, our data establish necrostatins as the first-in-class inhibitors of RIP1 kinase, the key upstream kinase involved in the activation of necroptosis.
منابع مشابه
Npgrj_nchembio_83 313..321
Necroptosis is a cellular mechanism of necrotic cell death induced by apoptotic stimuli in the form of death domain receptor engagement by their respective ligands under conditions where apoptotic execution is prevented. Although it occurs under regulated conditions, necroptotic cell death is characterized by the same morphological features as unregulated necrotic death. Here we report that nec...
متن کاملConnections between various trigger factors and the RIP1/ RIP3 signaling pathway involved in necroptosis.
Programmed cell death is a basic cellular process that is critical to maintaining tissue homeostasis. In contrast to apoptosis, necrosis was previously regarded as an unregulated and uncontrollable process. However, as research has progressed, necrosis, also known as necroptosis or programmed necrosis, is drawing increasing attention, not least becasu of its possible impications for cancer rese...
متن کاملThe Role of Mammalian Target of Rapamycine Signaling Pathway in Central Nervous System Cancers: A Review
Mammalian mechanistic target of rapamycine (mTOR) is a conserved serine/threonine kinase in the cellular PI3K/Akt/mTOR signaling pathway. This pathway is modified by cellular alterations such as level of energy, growth factors, stresses, as well as the increased environmental level of cancerous cytokines. In general, increase of this kinase protein function is seen in various types of cancers, ...
متن کاملCellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication
SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...
متن کاملCooperative inhibition of RIP1-mediated NF-κB signaling by cytomegalovirus-encoded deubiquitinase and inactive homolog of cellular ribonucleotide reductase large subunit
Several viruses have been found to encode a deubiquitinating protease (DUB). These viral DUBs are proposed to play a role in regulating innate immune or inflammatory signaling. In human cytomegalovirus (HCMV), the largest tegument protein encoded by UL48 contains DUB activity, but its cellular targets are not known. Here, we show that UL48 and UL45, an HCMV-encoded inactive homolog of cellular ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature chemical biology
دوره 4 5 شماره
صفحات -
تاریخ انتشار 2008